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Phase diagram of chiral biopolymer Wigner crystals
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We study the statistical mechanics of counterion Wigner crystals associated with hexagonal bundles of chiral

biopolymers. We show that, due to spontaneous chiral symmetry breaking induced by frustration, these Wigner
crystals would be chiral even if the biopolymers themselves were not chiral. Using a duality transformation of
the model onto a “spin-charge” Hamiltonian, we show that melting of the Wigner crystal is due to the
unbinding of screw dislocations and that the melting temperature has a singular dependence on the intrinsic
chirality of the biopolymers. Finally, we report that, if electrostatic interactions are strongly screened, the
counterions can condense in the form of an intermediate achiral Wigner solid phase that melts by the unbinding

of fractional topological charges.
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I. INTRODUCTION

Biopolymers, such as DNA and F-actin, carry a large
negative charge. The resulting electrostatic self-repulsion al-
lows biopolymers to remain soluble in aqueous solution at
high concentrations, yet, addition of even very low concen-
trations of positive polyvalent “counterions” triggers conden-
sation into dense, hexagonal bundles [1,2]. Biopolymer con-
densation mediated by counterions not only has important
applications in biology—in the context of genome
compaction—but it also involves fundamental questions of
statistical mechanics. The classical mean-field Boltzmann-
Poisson theory of aqueous electrostatics only allows repul-
sion between like-charge macroions. Biopolymer condensa-
tion is thus a consequence of the local correlations and
thermal fluctuations that are not included in mean-field theo-
ries [3]. Rouzina and Bloomfield [4] first proposed that cor-
relations between polyvalent counterions condensed on a
macroion could cause them to adopt some form of spatial
order, now referred to as a Wigner crystal. By suitably stag-
gering the ordered counter-ion arrays of two macroions, a
strong, short-ranged, electrostatic attraction would result.

This mechanism has been the subject of many analytical
[5,6] and numerical [7-9] studies. The electrostatic ground-
state of an array of neutralizing counterions condensed on a
cylindrical surface with uniform opposite surface charge—a
primitive model of a biopolymer—is a right or left-handed
helical array [see Fig. 1(a)] with a pitch that depends deli-
cately on the range of the electrostatic repulsion [10]. Actual
biopolymers such as DNA are helical and the pitch of the
counterion array would be expected to lock to that of the
biopolymer. On the other hand, simulation studies find that
the counterion arrays of two approaching charged cylinders
are deformed and that the counterions concentrate along the
line of closest contact [7] where they form an array of links
(“salt bridges”) connecting the two cylinders [see Fig. 1(b)].
Thermal fluctuations do not permit long-range positional or-
der for purely one-dimensional systems such as these, so the
counterions should be viewed here as a highly correlated
Wigner liquid. Whether the polyvalent counterions of actual
biopolymer bundles should be viewed as Wigner liquids or
as Wigner crystals has not yet been established [5].
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The subject of this paper is the nature of the melting tran-
sition of Wigner crystals for the case of an infinite bundle of
short biopolymers and, specifically, the role of chirality in
the melting transition. Figure 2(a) shows a cross section of
the geometry that is assumed throughout this paper: a dense,
hexagonal bundle of biopolymers—indicated by circles—is
interspersed by counterion columns placed on lines of close
contact between the cylinders. This array of counterion col-
umns happens to have the symmetry of a Kagomé lattice.
Counterions can slide up or down these close contact lines
and melting is signaled by loss of phase coherence between
different columns. Upon the loss of long-range positional
correlations in the counterion density, the system passes from
a fully three-dimensionally ordered solid, to a two-
dimensionally ordered columnar liquid crystal. The melting
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FIG. 1. Ground state of polyvalent counterions (valency Z),
shown as small spheres, neutralizing a single cylindrical macroion
of diameter o, (a) or two cylindrical macroions in close proximity
(b). The counterions are excluded from the macroion interior vol-
ume. The charge per unit length of the macroion is —ep,. In (a),
counterions are positioned along a helix with a pitch that depends
on the range of the electrostatic interaction. The axial spacing Z/p,
between adjacent counterions is determined by the condition of
charge neutrality. In (b), counterions are positioned along a column
on the line of closest approach between the two macroions. The
counterions produce a net short-range attraction between the
macroions.
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FIG. 2. Ground state of polyvalent counterions neutralizing an
extended, hexagonal bundle of macroions. (a) Top view of the
bundle. Counterions are positioned along columns situated on the
sites of a Kagomé lattice. The columns define triangular
“plaquettes” as indicated by a circle. (b) side of a prismatic trian-
gular plaquette. Triangular plaquettes are frustrated because geom-
etry prevents perfect pairwise stagger of the three columns with
their respective nearest-neighbors, as favored by electrostatic repul-
sion. (¢) Minimum-energy compromise structure. Neighboring col-

umns are shifted vertically by d/3. The counterions form a helical
spiral. The sign of the helicity is not determined.

transition of this simplified model is, we shall show, an el-
egant and challenging problem of statistical mechanics with
implications for other areas of physics such as phase transi-
tions of Josephson Junction arrays.

Figure 2(b) shows one feature that makes this transition
interesting: frustration [11]. A triangular prism composed of
three adjacent counterion columns is frustrated because the
three counterion columns cannot simultaneously minimize
their mutual electrostatic repulsion by a pairwise stagger.
The lowest-energy compromise structure is either a left or a
right-handed spiral with the adjacent counterion columns out
of phase by 120° [see Fig. 2(b)]. If one imposes the same
choice of chirality on all of the triangular prisms, then all of
the hexagonal prisms of counterion columns surrounding the
biopolymers must have the opposite chirality. The pitch of
these counterion helices is here fully determined by the ge-
ometry of the lattice plus the condition of charge neutrality.
The intrinsic chirality of biopolymers breaks the symmetry
between the two possible choices for the chirality of the
counterion arrays. Importantly, the 120° phase relation be-
tween adjacent counterion chains, which is favored by elec-

PHYSICAL REVIEW E 76, 021924 (2007)

trostatics, in general conflicts with the intrinsic pitch of the
biopolymers, which forms a second source of frustration.

Given the discrete nature of the broken chiral symmetry, it
might seem at first sight that the development of long-range
chiral order among the different counterion prisms and the
melting transition are entirely separate problems. The former
should simply have the character of a two-dimensional (2D)
Ising model [12], which has been used to describe other
forms of chiral symmetry breaking. One certainly can define
an Ising spin variable S(R;)==1 on the centers R, of each
triangular plaquette of the Kagomé lattice that denotes the
choice of chirality for that particular plaquette. The intrinsic
chirality of the biopolymers would play the role of a “mag-
netic field” conjugate to S(R,;) and the electrostatic interac-
tion between adjacent triangular counterion prisms, which
favors the same spin choice for adjacent Ising variables,
would play the role of an “exchange interaction.” The phase
diagram for the development of chiral order would then be
isomorphic with that of the Ising model, with a line of first-
order transitions terminating at a critical point. Careful con-
sideration of the lattice geometry reveals however, that this
description is not exact, as most Ising spin arrangements
{S(R,)} are not permitted in the Wigner crystal state. Specifi-
cally, one finds that the sum ERtS (R,) around any hexagonal
circuit surrounding a biopolymer has to be an integer mul-
tiple of three or else the counterion column displacement
along the direction normal to the lattice would not be
uniquely defined. To satisfy this constraint, domain walls
separating regions of opposite chirality would have to follow
a perfectly straight line along one of the three crystallo-
graphic directions of the Kagomé lattice, while single chiral
spin flips would be forbidden entirely. Thermal fluctuations
of the chiral variable are thus strongly suppressed, at least as
compared to the case of the Ising model. On the other hand,
loss of phase coherence between the counterion columns
would permit a broader spectrum of chiral-spin excitations
so the melting of the Wigner crystal and the development of
long-range chiral order parameter are intrinsically coupled
phenomena.

The paper is organized as follows. In Sec. II we show how
the duality method can be used to construct a coupled “spin-
charge” Hamiltonian. The charges are here topological in
nature and mark vortexlike screw defects in the spatial pat-
tern of the sliding phase degree of freedom. In this represen-
tation, the melting of the Wigner crystal corresponds to the
unbinding of integer topological charges. In Sec. III we use
the spin-charge Hamitonian to construct the different ground-
states and then to show that chiral spin flips and wandering
domain walls with steps and kinks are allowed provided we
also allow the introduction of fractional topological charges
{O(R,)=+1/3} defined on the centers R,, of the hexagonal
prisms. In Sec. IV, we combine the Kosterlitz-Thouless (KT)
renormalization group equations for both the fractional and
integer charge degrees of freedom with a Fisher droplet de-
scription for the spin degree of freedom to construct the
phase diagram shown in Fig. 3.

In Fig. 3, the coordinate f of the horizontal axis is a mea-
sure of the strength of the intrinsic chirality of the biopoly-
mers, as discussed in more detail in Appendix B. In the in-
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FIG. 3. Schematic hase diagram. The horizontal axis f is a mea-
sure of the intrinsic chirality of the biopolymers. The Wigner crystal
can adopt three different structures. In the “chiral” state, counteri-
ons adopt the helical structure of Fig. 2. At zero temperature, all
triangular plaquettes have the same helicity sign determined by the
sign of f. In the “staggered” chiral phase, the pitch of the counterion
helix has doubled, while the counterions are arranged in identical
layers in the a-chiral uniform phase (see Fig. 7). Transitions be-
tween the different structures are first order, with spontaneous chiral
symmetry breaking along the line f=0. The solid lines indicate
continuous melting transitions of the Wigner crystal by the unbind-
ing of integer-screw dislocations (see Sec. IV). The phase diagram
is periodic under f— f+3.

terval |f|<1, the counterions of the Wigner crystal locally
adopt, in the low temperature phase, the uniform helical-
triangular arrangement shown in Fig. 2 though “spin-wave-
like” phase fluctuations produce power-law decay of the po-
sitional correlations of counterion order. A line of first-order
transitions at f=0, marking spontaneous chiral symmetry
breaking, terminates at a multicritical point, which is also the
terminus of two continuous melting transition lines charac-
terized by screw dislocation unbinding. The singular depen-
dence of the melting transition temperature on the chirality
parameter derives from its role in quenching domain fluctua-
tions of the chiral order parameter. It is the characteristic size
of these chiral domains that limits the unbinding of fractional
charges. As the range of the electrostatic interaction is re-
duced, an achiral Wigner crystal for a range of intermediate
temperatures appears along the f=0 line. In the achiral
Wigner crystal, the counterions are arranged in flat layers
perpendicular to the polymers. The achiral Wigner crystal
melts by the unbinding of fractional charges. The melting
lines are further marked by maxima at f==+1/2 while the
points f=+1 mark the transition, via an intermediate chiral
phase with a narrow stability interval, to an achiral Wigner
crystal.

II. THE CHARGE-SPIN HAMILTONIAN
A. Phase Hamiltonian

The geometry of the model was already shown in Fig. 2:
a dense bundle of charged, chiral biopolymers of length L is
placed on a hexagonal grid with a lattice constant D close to
the hard-core diameter of the polymers o.. The fixed charges
of the polymers have a mean line density of —ep, and pro-
duce an electrostatic potential that is the sum of the radially
symmetric potential ¢, of a line charge plus a multipole con-
tribution ¢; due to nonuniformity in the spatial distribution
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of the fixed charges. This second term reflects the helical
symmetry of the polymer and has a repeat period p equal to
the pitch of the macroion. Columns of neutralizing counteri-
ons of valency Z are confined to the array of contact lines
that separates neighboring pairs of polymers. The mean spac-
ing d=3Z/p, between the counterions along the (axial) z
direction is determined by the condition of charge neutrality.
For ¢, =0, the modulation &p;(z) of the line charge density of
counterion column 7 around a mean density Z/d would be a
periodic function of z with period d:

oo

Spi(2) = %2 (A, explin[Gz - ) + c.c}.
n=1

(2.1)
where G=2m/d. A,, is here a Fourier coefficient that depends
on the structure of the counterions while ¢; is a phase vari-
able restricted to the interval [0,27]. A uniform slide of
counterion column i along the z direction by an amount Az
would correspond to a phase shift GAz. It is assumed in this
paper that the length L of the biopolymers is sufficiently
short so that thermal fluctuations do not produce loss of co-
herence of the phase variable by phase fluctuations along the
z direction. In Appendix A we use the Debye-Hiickel theory
of aqueous electrostatics to discuss the conditions under
which this assumption holds and we also show that the
screened electrostatic interaction energy between a pair of
neighboring counterion columns i and j is proportional to
cos(¢;— ¢;) so the optimal phase difference of 7 corresponds
to the staggered arrangement of Fig. 2(b). In Appendix B we
show that the chiral contribution ¢ to the potential produces
a shift in the optimal phase difference away from . The
effective “phase Hamiltonian” for the system of phase vari-
ables {¢;} of the different columns is

H[¢]= VIE cos(¢; - ¢j—Aij) +V, 2 cos(¢; - ¢j)-
(ij) iy
(2.2)

In the first term, V; is a positive energy scale whose magni-
tude is determined by the strength of the electrostatic inter-
action between adjacent counterion columns (ij) and by the
interaction of the counterions with the chiral potential ;.
The magnitude of the “bond” variable A;; is a constant that
will be denoted by |A;|=2mf/3, with f a measure of the
intrinsic chirality of the biopolymers. In Appendix B we
show for a simple specific model that if the chiral potential
¢ is strong, then the repeat period d of the counterion col-
umns “locks” to the pitch of the chiral polyelectrolyte and
f=1/2. If the chiral potential is reduced, then the counterion
density modulation becomes incommensurate with the heli-
cal pitch, and f is reduced as well, while f=0 if ;=0. The
bond variable A;; is odd under exchange of the site indices i
and j, while the sign of A;; (Ref. [13]) is such that if one
imposes the optimal phase difference of ¢;—¢;=7+A;; on
the six counterion columns surrounding a given biopolymer,
then this produces a helical charge arrangement that has the
same helicity as the biopolymer (see Fig. 4, note that the
pitch of the counterion helix and the biopolymer in general
differ).
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FIG. 4. Helical charge distributions of the polyelectrolyte core
(solid line) compared with the charge distribution of the counterions
(a). The pitch p of the polyelectrolyte charge distribution in general
need not equal the pitch of the counterion helix but “lock-in” will
take place (white arrows) if the electrostatic interaction between the
counterions and the helical charge distribution is strong. (b) shows
the orientation of the terms A;; entering the phase Hamiltonian

(2.1).

To be clear, the presence of a nonzero value of f for
bundles of chiral molecules is guaranteed by symmetry con-
siderations. An understanding of precisely how this param-
eter relates to microscopic details of the system would re-
quire a detailed description of the biopolymers at short
length scales, beyond the simplistic primitive model (al-
though we propose a simple microscopic mechanism to gen-
erate this coupling in Appendix B). While an intuitive under-
standing of this measure of chirality is immediate only in the
limiting cases of f=0 and f=+1/2, the special frustration
associated with the Kagomé lattice forces us to consider the
strong dependence of bundle thermodynamics on this param-
eter.

Finally, the second term in Eq. (2.2), with V,=V, de-
scribes the weak residual electrostatic interaction between
pairs of counterion columns located on next-nearest-
neighbor sites ((ij)) of the lattice. In Appendix A we show
that the interaction between more distance counterion col-
umns can be neglected.

B. Duality transformations

The Hamiltonian (2.2) has been studied extensively in the
achiral limit f=0 and V,=0 in the context of Josephson Junc-
tion arrays. We will borrow the method of duality transfor-
mations developed by Cherepanov er al. [14] for that case to
transform our phase Hamiltonian to its dual form, i.e., to a
Hamiltonian defined on the centers R, and R, of, respec-
tively, the hexagons and triangles of the Kagomé lattice (see
Fig. 5). The starting point is the identity

+00

> expling)l,(B)

n=—o0

exp(B cos ¢) = (2.3)

with I,(x) a modified Bessel function. Using Eq. (2.3) one
can carry out the integration over the phase variables in the
partition function
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FIG. 5. (a) The Kagomé lattice (solid dots) and nearest-neighbor
bonds of the Kagomé lattice (solid lines). The dual sites of the
Kagomé lattice are shown as gray dots and the bonds of the dual
lattice are shown as dashed gray lines. (b) Current configurations on
the bonds of the dual lattice that satisfy the conservation condition
are constructed from currents circulating around the hexagonal and
triangular plaquettes.

Z():f [dQﬂCXP{Bl% COS(¢i_¢j_Aij)} (2.4)
ij
with B1=V,/kgT. Note that only the first term of the phase
Hamiltonian is included at this point. For every pair (¢;, ¢;)
of adjacent phase variables of a bond of the Kagomé lattice,
one introduces an integer index n;; that has to be summed
over. The phase variables can now be integrated over. Only
integer index distributions {n;;} contribute that obey the local
constraint ;n;;=0 for every site i of the lattice. Next, one
defines 01rculat1ng, integer-valued “currents” j(R,) and j(R,)
on the hexagonal, respectively, triangular dual lattice sites
(see Fig. 5). The integer summation 7;; index is related by
;=J(R;)—j(R)) to the integer currents of the hexagon and
tr1angle bordering the (ij) bond. The constraints = n;;=0 are
then automatically satisfied so the constrained summatlons
over the set {n; } in the partition function can be transformed
into the—more convenient—unconstrained summations over
the integer currents

Zy=

1
2 )}Hexp( > {%U(Rh)—j(Rz)]Z
Ry).j(R)} Ry,

+2milj(R,) —j(R,)](%ﬂ‘)})-

(2.5)
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The prime in the argument of the exponential indicates sum-
mation over the six triangular plaquettes surrounding the
hexagonal plaquette at R,. In deriving Eq. (2.5), it was
assumed that B, was large compared to one so the modified
Bessel function could be approximated by [I,(x)
~ exp(—n?/2x). Finally, one uses the Poisson summation for-
mula to transform the summations over the integer currents
into Gaussian integrals plus summations over integer-valued
indices M(R,)=0,+1,+2,..., located on the hexagonal
plaquettes and odd-integer valued indices S(R)==1,+3,.
located on the triangular plaquettes (details are provided in
Appendix C):

Zy= >
M(Rj)=0,+1,%2,...
S(R)=%1,+3,...

e HalksT (2.6)

The integer indices are now all defined on the dual lattice.
The effective Hamiltonian for the integer indices can be writ-
ten as a sum Hy=H,+Hg of separate “charge” and “spin”
Hamiltonians. The charge part of the Hamiltonian has the
form

K !
Hy=p2 OR,) - o= X O(R)Q(R)In(R, ~ R}/D)
R;, TRy#R,
(2.7)
and the spin Hamiltonian has the form
(2.8)

Hg=h2 [S(R) +2fP.
R

t

The parameters of the Hamiltonian all are proportional to B;:

w_mh
kgT 2 °
K \677,31
8mwkyT 2
hooa?
o _Th (2.9)
kyT 6

The quantities Q(R;,) in Eq. (2.7) are linear combinations of
the two groups of integer indices

I
O(R,)=M(R,) + 32 S(R)) (2.10)
Rt

which acts as a local constraint. The summation in Eq. (2.10)
is over the six triangular plaquettes that border the hexagonal
plaquette at R,. Finally, the summation over the integer in-
dices also is subject to a global “charge neutrality constraint”

> O(R,)=0. (2.11)
R,

The charge Hamiltonian has the familiar mathematical
form of the two-component Coulomb plasma as introduced
by Kosterlitz and Thouless to describe the low temperature
properties of the 2D XY model [15]. The chemical potential
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of a topological charge is given by uQ? while KQ? measures
the strength of the 2D Coulomb interaction, not to be con-
fused with the actual Coulomb interaction between the coun-
terions.

The order-parameter correlation function of the phase de-
gree of freedom

gij= (P b)) (2.12)

is proportional to the correlation function (Jp;dp;) for the
counterion charge density fluctuations. The Fourier transform
of (Jp;dp;) is proportional to the in-plane structure factor
S(q ) of the system of counterions. It is useful to recall here
that in the low-temperature phase of the XY model, topologi-
cal charges only come in bound pairs. In that regime, the
correlation function has a power-law dependence on separa-
tion

1

o —— 2.1
8sw |Rij|7’ ( 3)
with a—temperature dependent—exponent n=4mkzT/K.
The decay of the correlation function is due to “spin-wave-
like” thermal fluctuations of the phase degree of freedom.
From the physical interpretation of the phase variables for
the case of Wigner crystals, it follows that spin-wave excita-
tions would correspond to transverse shear modes of the
Wigner crystal with displacements along the direction of the
counterion columns and wave vectors in the plane. The shear
modulus of the Wigner crystal for displacements along the z
direction would correspond here to the phase stiffness K.
In the high temperature phase of the XY model one encoun-
ters free topological charges, which correspond to unbound
screw dislocations for the case of the Wigner crystal. The
area density nyoc 1/ & of the free charges determines the cor-
relation length for exponential decay of the correlation func-
tion (9p;Sp;). The shear stiffness and K. vanish in this re-
gime, which thus can be identified with a correlated Wigner
liquid.

However, as discussed in Appendix D, the order-
parameter correlation function is affected not only by phase/
charge fluctuations but also by spin fluctuations. In fact, the
identification of the {S(R,)} variables as the chiral spin de-
grees of freedom discussed in the Introduction follows from
their relation with the correlation function. In Appendix D
we show that, in the low-temperature regime,

8= <e(21'ri/3)S(R,)> (214)
for a nearest-neighbor pair of sites (ij) that borders a trian-
gular plaquette having integer index S(R,). If S(R)==1,
then the phase difference between two adjacent sites must
equal +27r/3 so we indeed can identify S(R,) with the Ising
variable discussed in the Introduction. By adding the phase-
differences of two nearest neighbors, one finds that for two
next-nearest-neighbor sites that are part of the two adjacent
triangular plaquettes R, and R; which contain sites i and j,
(see Fig. 6), one finds that the (low-temperature) correlation
function for next-nearest-neighbor sites is given by
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FIG. 6. The “external” current that must be included to compute
the contribution to the dual theory from the next-nearest-neighbor
interactions between ¢; and ¢; in Eq. (2.16). This term leads to a
coupling between the spin variables S(R,) located on the two
shaded triangular sites (see Appendix D).

8ijy = <exp<?[5(Rt) +S(R/ )])>. (2.15)

We now can use Eq. (2.15) to include the next-nearest-
neighbor interaction term of the phase Hamiltonian that we
ignored so far. Expanding the partition function to first order
in the second neighbor interaction gives

7= Zo(l - B Re g((ij)))’ (2.16)
(i)

Gy
where B,=V,/kgT. Using Eq. (2.15) in Eq. (2.16), and ex-
ponentiating, one can include the second-neighbor interac-
tion as a contribution to the spin Hamiltonian

Hy=h2[SR)+2fP+] X cos(z—’T[S(R,) +S(R; )])
R, (R.R)) 3

(2.17)

with J=2V,. Note that the first term of the spin Hamiltonian
is minimized by choosing S(R,) equal to —2f, so f acts as a
field conjugate to the chiral order parameter (S(R,)). If the
two spin variables are opposite, then the second term equals
+J. If the two spin variables are the same, then it equals —J/2
for S=1 and —J for S§=3. We thus can—crudely—interpret J
as a “ferromagnetic” exchange constant for chiral spin vari-
ables.

Finally, we show in Appendix D that if the two sites (ij)
are on opposite sites of a domain-wall of the spin variable,
then the domain wall produces loss of phase coherence. In
effect, the spin-wave prediction ggw IRT--\” only applies for
two sites that are part of the same domain of the spin degree
of freedom. With Egs. (1.7), (1.10), and (1.17) we are now in
a position to discuss the effect of chirality on the ground-
state, low-temperature excitations, and phase diagram of the
system.

III. GROUND STATE AND DEFECT STRUCTURES

In this section we determine the different ground states of
the spin-charge Hamiltonian as a function of the chirality
parameter f and describe the corresponding counterion con-
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figurations of the Wigner crystal. Following this, we discuss
defect structures of the groundstate, which will play an es-
sential role when we construct the phase diagram.

A. Ground states

It follows from the phase Hamiltonian that the energy of a
spin-charge structure is a periodic function of f under the
operation f— f+3 while under the operation f— —f, the en-
ergy is invariant when the signs of all spin variables are
inverted as well. In determining the ground-state structure
one can thus be restricted to the interval 0= f<<3/2. The
structure of the groundstate is obtained by minimizing the
spin-charge Hamiltonian. The charge Hamiltonian is mini-
mized by imposing Q(R;,)=0 on all hexagonal plaquettes
and spin structure must be obtained by minimizing

He=h> [SR)+2fF+J > cos(z?w[S(R,) + S(R,’)])
R

t (R.R))

subject to the constraint that for every hexagonal plaquette,
the six spin variables surrounding the plaquette must obey
the condition that éEl’{ S(R,) is an integer.

1

1. Chiral ground state

For 0=<f<1 the first term of the spin Hamiltonian is
minimized if S(R,)=—1 on all triangular sites so éz,’{rS(R,)
=—1. The corresponding counterion arrangement, shown in
Fig. 7(a), is the helical structure discussed in the Introduc-
tion, with a phase difference of 277/3 between adjacent coun-
terion columns. The pitch of the counterion helix is fixed at
Ppea=2d. The chiral ground state has optimal stability at the
center of the interval, i.e., f=1/2, where the “field energy,”
first term of Eq. (2.17), is zero. In terms of the phase Hamil-
tonian (2.2), the optimal phase shift 277/3 equals at this
point. This structure is known as a “q=0" state in the theory
of the Kagomé XY antiferromagnet [16—-18].

2. Achiral ground state

In the range 1 <f=3/2, the first term of the spin Hamil-
tonian is minimized by S(R,)=-3 on all triangular sites, with
éZﬁtS(R,)=—3. The counterion arrangement, shown in Fig.
7(c), is purely achiral in this case and composed of stacks of
counterions perpendicular to the direction of the polymers.
Note that f=3/2, at the center of the achiral range, corre-
sponds to the condition A;;=2mf/3=m. The phase Hamil-
tonian Eq. (2.2) reduces to the conventional unfrustrated XY
model in this case.

3. Staggered Chiral ground state

As shown in Fig. 7(b), the constraint condition also can be
satisfied by assigning S(R,)=—1 and S(R,)=-3 to alternate
triangular plaquettes surrounding a hexagonal plaquette, with
éEl’{tS (R,)=-2. This state is, in fact, doubly degenerate ow-
ing to the symmetry under interchanging the spins S(R,)
=—1 and S(R,)=-3. This “staggered” phase can only be the
groundstate in the regime f; 1 where the chiral and achiral
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FIG. 7. The three Wigner crystal ground states (lower part) are
shown with the corresponding chiral spin configurations (top part).
The values of the integer indices M(R,,) are given inside the hex-
agonal cells and the values of S(R,) are given inside the triangular
cells. The topological charge Q(R;)=M (Rh)+é21'{’S(Rt) on the
hexagonal sites is zero in all three cases. The stability range of the
three states is indicated.

states are nearly degenerate and if the second neighbor inter-
action is included as well. The actual stability conditions are

f>1,

,32>42_ﬂ2,31(f— 1). (3.1)
7

This ground state is only stable in a narrow region near f; 1
since V,=V,. In terms of the phase pattern, ¢, increases (or
decreases) by 24 rather then 47 as the hexagonal plaquettes
are circuited. The counterions wind around the polyelectro-
lyte cores with 1/2 the pitch of the uniform chiral ground
state.

An important result of this section is that, apart from this
small interval around f=1, the local constraints (2.10) stabi-
lize either the chiral state with the “electrostatic” pitch, p; or
the achiral state and appear to forbid any more complex chi-
ral structures with a pitch intermediate between O and pg.
The results of the ground-state analysis are summarized in
Fig. 8.

B. Defects

The constraint conditions (2.10) also play an important
role in determining the defect structures of the chiral ground
state. Because Q(Rh)—éEﬁtS(R,) has to be an integer, the
topological charge Q can only adopt the values Q
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FIG. 8. The ground-state structure of the chiral as functions of
the ratio V,/V; of the strength of next-nearest-neighbor and nearest-
neighbor electrostatic interaction between counterion columns and
the chiral parameter f. Shaded regions correspond to chiral
structures.

=+1/3,+2/3,%1,.... Another consequence of this con-
straint is that the excitations in general are expected to have
a combined charge-spin structure [17].

1. Integer charge excitations

The integer charge excitations Q(R;)=+1 of the S(R,) =
—1 chiral ground state are, exceptionally, pure charge defects
that require no spin flips to satisfy the constraints. In terms of
the counterion distribution, integer charge excitations repre-
sent screw dislocations in the Wigner crystalline ground state
with the phase ¢ changing by 2 in circuits enclosing
charged hexagonal plaquettes. If the spin degrees of freedom
are kept fixed in one of the two chiral groundstates, then the
charge Hamiltonian H), can be used without further restric-
tions to obtain the energy of a distribution of integer-charged
defects. Typical low-energy integer defect structures are then
the usual Q(R;,)==1 bound dipoles that characterize the
low-temperature phase of the XY model.

In the limit f=J=0, integer charge defects are however
unstable because the chemical potential w of one Q(R;,)=1
charge exceeds the sum of three chemical potentials equal to
/9, the chemical potential of a Q(R,)=1/3 charge. Integer
charges thus could break up into three fractional charges. A
simple example is shown in Fig. 9(a): a Q(R;)=1 charge is
decomposed into three Q(R;)=1/3 charges placed at the cor-
ners of an equilateral triangle of nine flipped spins surround-
ing the original hexagonal plaquette that carried the original
integer charge. The spin flips are here required in order to
satisfy our local constraints that Q(R;)=0 except on the
three vertices of the triangular domain.

Because of the logarithmic repulsion between the three
fractional charges, the “electrostatic” energy cost of the tri-
angle can be reduced by allowing the enclosed area A of the
triangle to grow. However, chirality and exchange interaction
both act to stabilize integer defects against this form of de-
composition. If a “field energy” cost 84fA is imposed on the
flipped spins then, by comparing the repulsive interaction
potential K In A'? between the fractional charges with the
field energy term, it follows that the total energy is mini-
mized for A" ~% ! A similar argument shows that A"
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FIG. 9. Composite spin-charge defects. (a) Q=1 defect com-
posed of three separate Q(R;)=+1/3 defects located on the verti-
ces of an equilateral triangle. Inside the triangular domain, the spin
variables are S(R;,)=+1 (shaded), outside the domain S(R,)=-1
(white). (b) A charge-neutral single flip (shaded triangle) requires
three fractionally charged defects.

~(K/J)?* for the achiral case when f=0. We conclude that
integer defects of the chiral ground state can be stable defects
on larger length scales and that they can be endowed with an
interior structure composed of fractional charges.

2. Single spin flips

Figure 9(b) shows a single spin flip of the S(R,)=-1
ground state. The constraints produce three Q(R,)=1/3
charges on the three hexagonal plaquettes surrounding the
triangular plaquette. This triplet of defects carries a net topo-
logical charge of Q=1, so a single spin flip would carry a
logarithmically divergent energy cost. This can be avoided
by introducing a compensating Q=-1 integer charge, for ex-
ample by replacing one of the three Q(R;)=1/3 charges on
the three hexagonal plaquettes with a Q(R;,)=-2/3 charge.

3. Chiral droplets

Straight chiral domain boundaries do not couple to the
charge degree of freedom, but a 60° or 120° bend or kink of
a domain boundary requires a fractional charge Q(R;)=1/3
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at the location of the kink. Closed domains of inverted
spins—chiral droplets—can be constructed only by introduc-
ing fractional charges along the perimeter. Figure 10(a)
shows such a domain in the form of a parallelogram, with
straight boundaries along two of the crystallographic direc-
tions, with alternating Q(R,)=+1/3 charges on its four cor-
ners (with net charge zero). The energy cost of a domain of
size € of this type can be estimated as

Ecp() =f€>+J0+yInt (3.2)

with f*=8hf. The last term is the logarithmic Coulomb po-
tential with yoc K. Note that it follows from Eq. (3.2) that the
energy cost of separating fractional charges Q(R;)=+1/3
charges by a distance € scales either linearly with € if f
=0 and quadratically otherwise.

Adding more fractional charges along the boundary al-
lows for more complex perimeter shapes. Due to the attrac-
tion between charges of opposite sign, right- and left-
bending kinks attract and form bound dipole pairs [19]. A
fractional dipole along an otherwise straight perimeter is
equivalent to a step, or “jog,” of the perimeter with a step
size proportional to the spacing of the pair. The direction of
the step is determined by the direction of the dipole. Domain
boundaries of arbitrary shape can be constructed this way. An
example of such a domain is shown in Fig. 10(b). A compact
droplet of area A with a perimeter of length ¢ ~A!? that
contains n such steps would have an energy of order

Ecp(A,€,n) =fA+JC+en. (3.3)

Note that there is no longer a logarithmic term since all frac-
tional charges come in dipole pairs. This type of chiral drop-
let domain is in fact charge effectively neutral.

4. Chiral worms

A second way of combining the fractional charges along a
chiral domain boundary into dipole is by bringing the oppo-
site sides of the domain together pairing fractional charges of

7

ANIANYARY Y. \

XA KX X X X X X X XMX=X
w X )

(b)

FIG. 10. Chiral droplets. (a) shows a neutral chiral droplet in the form of a paralellogram with the minimum number of fractional defects
decorating the four corners. Q(R;,)=+1/3 charges are indicated as solid dots and Q(R;)=—1/3 as open dots. Note that the fractional charges
are separated on length scales of the order of the droplet size. (b) shows a more complex domain shape. The kink-steps of the domain wall
are decorated by a distribution of Q(Rj)==1/3 neutral dipole pairs. Here, Q(R})=+1/3 charges are labeled as filled circles and Q(R,)=

—1/3 are labeled as open circles.
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FIG. 11. Chiral worms. Spin variables with S(R,)=+1 are
shown as shaded triangles. Endpoints, branch points and bends of
the domains are decorated by fractional-defect dipoles. Chiral
worms become more prominent compared with chiral droplets
when the chiral field is large. Fractional defect charge is labeled as
in Fig. 10.

opposite sign located on opposite sides. The opposing walls
are effectively bound together, producing an extended linear
structure. The bound pairs of Q(R,)=1/3 fractional dipoles
act here either as end points of a string of flipped spins along
one of the crystallographic directions, or as +120° kinks of
the string, or as branch points (see Fig. 11). Strings of flipped
spins decorated with Q(R;)=+1/3 dipoles will be referred
to as ‘“chiral worms.” The energy cost Eqy of an (un-
branched) chiral worm of length m with n kinks can be esti-
mated as

Ecy(m,n) =fm+e(n+2) (3.4)

with f*=8hf and e ~2u/9 (which is also the energy cost of
a branch point).

IV. PHASE DIAGRAM

In the first part of this section, we will consider separately
the statistical mechanics of the topological charges and the
chiral droplets. In the second part, the results are combined
to construct the phase diagram.

A. Statistical mechanics of spin and charge fluctuations

1. Chiral droplet fluctuations

We have seen that by including fractional dipoles, we can
construct chiral domains of arbitrary size and shape. The
statistical mechanics of thermally excited chiral domains of
this type will be treated by analogy with domain fluctuations
of the 2D Ising model. In the Fisher droplet description, the
critical properties of a 2D Ising model are obtained by sum-
ming over thermally excited domains of different size and
shape [20]. Specifically, if we define [I=F-MH to be the
thermodynamic potential with F the free energy per site, M
the magnetization per site and H the applied field, then IT
(measured relative to the potential for uniformly aligned
ground state) can be expressed as the sum

[/kyT < >, G(A,L)e PAEALD), (4.1)
A,L

Here, G(A,L) is the number of configurations of an inverted
droplet of area A and perimeter length L and with
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AE(A,L)~h"A+J'L the energy cost of the droplet (J" is the
exchange constant). To analyze the dependence of I on tem-
perature we consider the dominant contributions to the sum
in Eq. (4.1) coming from asymptotically large domain fluc-
tuations. For these large domains the dominant perimeter
length of a compact droplet is estimated as L(A) ~ €,A"* and
one estimates G by treating the perimeter as a closed, self-
avoiding L-step walk:

G(L) (4.2)
Here, z is a constant that depends on the geometry of the

lattice and 6 a critical exponent. The sum can then be written
as

TL(T)ksT = > (e P (e PEDN 40 (4.3)
A

with 2(T)=J—kgT Inz an effective, temperature-dependent
line tension. For 7°=0, II(T) develops a power-law singular-
ity at a critical temperature kg7, =J */1n z, where the effective
line tension 3,(7) vanishes. The mean droplet size &, the cor-
relation length, diverges at this temperature as &(7) |77,
where 7=(T/T,~1) is the reduced temperature and v the
correlation length exponent. Below this critical temperature,
h*=0 marks a line of first-order transitions.

We can apply the droplet description to the chiral domain
fluctuations. However, due to the finite cost of a kink-pair
step, chiral droplets must have an elongated shape and be
oriented, on average, along one of the three axes of the
Kagomé lattice. If a domain wall bordering such a droplet
contains L steps then it will have a length of order L€, with
€y~ eP® the mean spacing between steps, and a width of
order L. The droplet energy is then of the form AE(A,L)
~h'A+J'L with h*=fh€, and J =J{,. Using this rescaling,
the droplet energy, and hence the expression for the thermo-
dynamic potential II, is of the same form as Eq. (4.5). When
/=0, the mean size of the domains is thus infinite above a
critical temperature kzT, =~ J€,. Because € o~ €P? is tempera-
ture dependent, this is a self-consistency equation for the
critical temperature with solution

o~ —
BX I(vyv,)”
where we have assumed that V>V, [21].

Fisher has showed that for nonzero applied fields [22],
droplets are highly elongated having a long axis &(h",7)
given by

(4.4)

g (h* 1) = &) o (h*)*3, (4.5)

where 7=(T/T,~1). The width Ax~ (h")™"* of the stringy
domain is small compared to the length, though it diverges
for h*=0. We will assume the same scaling relation for the
anisotropic chiral droplets apart from a rescaling of the cor-
relation length along the long axis by a factor of €.

2. Integer and fractional charge unbinding

The finite temperature statistical mechanics of the charge
degrees of freedom will be described by the Kosterlitz-
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Thouless (KT) renormalization group (RG) equations. It is
convenient, for the following, to express these KT equations
in the “dielectric” language where thermally excited dipoles
with a smaller spacing screen the interaction between pairs
of topological charges with a larger spacing. This screening
is described by a distance dependent dielectric constant &(r)
for charges separated by a distance r. The force F(r) between
two integer charges of opposite sign, and their potential en-
ergy V(r), are related to (r) by

KQ?

F(r)=-dVidr=- .
™ " 2me(r)r

(4.6)

At short distances r comparable to the lattice constant D, Eq.
(4.6) should reduce to the “bare” interaction of the charge
Hamiltonian so the dielectric constant at short length scales
would be gy=1. Let n(r)=nye ") be the area density of
dipoles with n, a normalization factor and define the related
quantity y,(r):

2,~BV(r)

yolr) = ngre (4.7)

The KT renormalization group equations can then be ex-
pressed as

dy BKQZ)
20 _ _
" dr _2(1 4are(r) Yo

de 2.2
r. = TBKO - (4.8)
The first equation is the derivative of Eq. (4.7) while the
second equation gives the contribution to the renormalization
of the dielectric constant from pairs of charges with spacing
between r and r+dr [23]. The initial conditions are that
yo(r=D) is proportional to the “bare” activity of a charge
and e(r=D)=1. The separatrix between flow lines that end at
y=0 and flow lines with divergent y crosses the y=0 line at
the KT transition temperature SByxrKQ?>/4meo=1. The Q
=1 KT unbinding temperature will be denoted by 7. In prin-
ciple, the unbinding temperature for fractional charges, T3
=~ éTl would be reduced by a factor (1/3)? compared with T,
[17]. Recall, however, that the Q=1/3 charges are confined
as well by chiral domains, which acts as a separate constraint
not included in the KT equations. In the next section, we
combine the KT equations with the droplet description to
include this constraint.

B. Phase diagram

In order to construct a phase diagram, we will combine, in
a physically intuitive manner, the KT equations of integer
and fractional charges with the Fisher droplet description.
Three critical temperatures will play a role: the KT transition
temperature for integer charge unbinding kzT; ~ Vy, the KT
transition temperature 7,,; for fractional charge unbinding,
which is small compared to T1(T1 e kae éTl) and the Ising tran-

sition temperature kg7, ~ m Since V,/V, is small com-

pared to one, we can assume that both T, and T3 are small
compared to 7. We will focus first on the case T;3<T,
<T,.
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Recall that fractional charge unbinding demands the pro-
duction of a chiral domain of at least the size of the separa-
tion between the charges. Since the size of chiral domains
that are produced by thermal fluctuations is limited by the
chiral correlation length &(7), we can treat &(7) as a “finite
size” limit on fractional charge unbinding at T',;. The free
energy cost for a fractional pair to be separated by a spacing
¢ large compared to &(7) would scale as € times the domain
line tension X(7) and thus rapidly prohibitively large com-
pared to kpT.

If the chiral correlation length acts as a finite size limit,
then there can be no unbinding transition at 7,3. Above T3
fractional charges can only partially unbind, but they will
remain confined inside chiral domains. The partial unbinding
has, however, an important consequence, namely, a sharp
rise in the effective dielectric constant. This effect can be
compared with the growth of the dielectric constant that is
produced by imbedding a distribution of finite-sized conduct-
ing domains inside an insulating matrix. To estimate this
growth of the dielectric constant starting near 7~ T3, we
can simply integrate the KT equations for Q=1/3 up to the
finite-size limit r=&(7):

dr
d T
rd—j~ 167 ITB 2 (4.9)
The solution is
y(g) . 52(1—T1/3/T)
Tis ™ iy
(&) ~|1- = gU-Ti/l (4.10)

According to Eq. (4.10), the dielectric constant indeed grows
rapidly above T3 and, formally, diverges at the critical tem-
perature 7=T, of the droplet model. However, it follows
from Eq. (4.8) that if the dielectric constant increases beyond
the threshold &;=B8K/47=T,/T, then integer-charged screw
dislocations—which are not confined to chiral domain
fluctuations—can unbind. The increase of the dielectric con-
stant due to the fractional charges thus leads to the melting of
the chiral Wigner crystal at a temperature below T,. The
condition for melting by integer charge unbinding can be
expressed as the condition &,=g(&). This translates into the
condition that in the Wigner crystalline phase, the chiral cor-
relation length cannot exceed the limit

. T Tis 1/4(1=T} 3/T)
&~ 1- .
T T

Combining Eq. (4.11) with the relation &'(7,h%*)-&"(7)
o (h*)?3 for the anomalous dependence of the correlation
length of the 2D Ising model on field strength, we can com-
pute the reduction A7 of the melting transition temperature
below T,. If the chiral field is zero then the reduction is

(4.11)
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T T 1/4V(1—T1/3/T )
A{0) ~ (—A/l—) . (4.12)

Note that this reduction of the critical temperature becomes
large when T'y;3 approaches T,. In the presence of a field, the
melting temperature increases with the field strength as

T(h')IT, -1 = [AH0)" = co(h )] (4.13)

The dependence of the melting temperature on the chiral
field strength thus has a cusp with exponent 2/3 at h* =0.
This sharp increase of the melting temperature as a function
of the intrinsic chirality is due to the reduction of the size of
the chiral domains by the applied field [24].

2. T <Ty3<T,

The physics of the melting transition is altered when the
unbinding temperature for fractional charges exceeds the
critical temperature T,. For T>T, and when f=0, domain
walls extend across the system. As discussed in Appendix D,
the appearance of domain wall fluctuations of infinite size
leads to exponential decay of the correlation function g;;
=(e'¢=%))_ 1t follows that, for f=0, the chiral critical tem-
perature 7, coincides with the loss of periodic order along
the z direction associated with counterion charge-density
waves of wave vector G=2m/d. However, as noted by Huse
and Rutenberg for the analogous regime in Josephson Junc-
tion arrays [25], the correlation function g?j=(63i(d’i‘¢1)) is not
subject to the dephasing by domain-wall boundaries inter-
vening between i and j [25], since the phase jump across a
boundary is a multiple of 277/3. This means that fractional
charges do not unbind at 7,. Over the temperature interval
T,<T<Ts; at f=0, g;; decays exponentially but g?j decays
as a power law. Correlation functions associated with all
charge density modes with wave number nG decay exponen-
tially, except for the modes where n is an integer multiple of
3 [14].

In this intermediate phase, the counterion density-density
correlation function (8p;(0) 8p;(z)) ~ Re[e‘BGngj] decays as a
power law. The counterions are restricted to parallel planes
spaced by a distance d/3 perpendicular to the direction of the
polymers. As in the chiral ground state, the counterion col-
umns have the usual 277/3 phase relation between adjacent
columns. However, in the chiral ground state the counterions
of each layer occupy only one of the three possible sublat-
tices, say A, B, and C, in alternating sequence from layer to
layer. In the achiral phase, the counterions occupy these three
sublattices with equal probability in a given plane. As this
achiral phase maintains periodic order along the z direction
(albeit of a shorter periodicity), the polyelectrolyte bundle
continues to have a finite shear modulus.

Above T, but below T3, integer and fractional defects
both remain bound. Above Ty, the fractional dipole/kinks
decorating chiral domain walls unbind leading to exponential
decay of gf’] This second transition completes the melting of
the Wigner crystal as now correlations of all density modes
nG are short ranged. It is a challenging problem to determine
whether the transition between the chiral and achiral Wigner
crystals persists for finite values of f. Because f is a field
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FIG. 12. Phase diagram for 7, <T,;;<T; and small f (sche-
matic). Along =0, broken chiral symmetry is restored at the Ising
critical point, 7. Below T,, the Wigner crystal is chiral and has a
periodicity d. Above T,, the Wigner crystal is achiral and has a
reduced periodicity of d/3. At T=T),;, the achiral Wigner crystal
melts by the unbinding of fractionally charged topological defects.
Along the dashed lines, the order parameter correlation function g;;
associated with the primary counterion density mode at G=27/d
changes from algebraic decay to exponential decay g;;. This change
in correlations is associated with the percolation of chiral domain
walls that span the system.

conjugate to the chiral order parameter, it would seem that
this transition could not extend to finite values of f. How-
ever, at lower temperatures (7<<7,) and finite f, the correla-
tion function g;; of the primary order parameter exhibits the
usual power-law decay whereas Appendix D provides argu-
ments that for higher temperatures and finite f, g;; must de-
cay exponentially, again due to dephasing by chiral domain
walls that span the system. This would suggest that there can
be a phase transition also at finite f, as characterized by the
change of the correlation function of the primary order pa-
rameter. Because f is finite, this would, however, not be a
transition from a chiral and to a fully achiral state.

A conjectured phase diagram is shown in Fig. 12. For the
case of Ty3>T,, we expect the temperature at which Q
=1/3 charges unbind to have only a weak dependence on f
since at this temperature, the chiral field is too weak to re-
strain domain fluctuations. As Ty, approaches T, from
above, the melting temperature of the Wigner crystal will
develop a stronger dependence on f, as discussed above for
the case, where T3 <T, <T).

3. Strong chirality

For larger values of the chirality parameter f, spin flips
from S=-1 to =3 become competitive with spin flips from
S=-1 to +1. The two spin-flip energies are in fact equal at
f=1/2 while for larger values of f, flips from S=-1 to -3
become increasingly favorable. The area density of fractional
dipole pairs and the polarizability start to rise as f increases
beyond 1/2 so f=1/2 must mark a maximum of the transi-
tion temperature 7(f). The transition temperature is expected
to have a second minimum around f=1. In this region, do-
main wall fluctuations involve walls separating chiral S
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=-1 regions and regions that are in the staggered chiral
groundstate of Fig. 7(b). Domain boundaries separating the
uniform S=-1 state and the staggered S=-1/S=-3 state
carry a finite density of fractional charges, even when do-
main walls are straight, so the bare line tension restraining
these droplet fluctuations must be of the order of V. We thus
expect the melting temperature at f=1 to be higher than at
f=0. Similar arguments apply to the transition between the
staggered state and the achiral §=-3 state. Finally, due to the
symmetries under f——f and f— f+3, f=3/2 must corre-
spond to a local maximum in the melting temperature of the
Wigner crystal.

V. CONCLUSION

The central conclusion of this study is that chirality plays
a fundamental role in the thermodynamics of counterion
Wigner crystals inside biopolymer bundles. We found that
the ground state of the Wigner crystal exhibits spontaneous
chiral symmetry breaking: even when the biopolymers them-
selves are not chiral, the counterion columns still arrange
themselves in a pattern of helical spirals, with a phase shift
of 27/3 between neighboring columns (the “q=0" state).
The origin of chiral symmetry breaking was found to lie in
frustration: the hexagonal geometry of a biopolymer bundle
does not allow counterion columns to minimize pairwise
their mutual electrostatic repulsion, and the lowest-energy
compromise structure is helical. The helical ground state of
the Wigner crystal is not altered when intrinsic chirality of
modest strength is included, except that the sign of the he-
licity of the biopolymers determines the sign of the helicity
of the counterion array.

We also found that, as the temperature is raised, the
Wigner crystal melts by the unbinding of screw dislocations
in the displacement pattern of the counterion columns along
the direction of the polymers. The melting temperature 7(f)
depends sensitively on the strength f of the intrinsic chiral-
ity: it has a singular minimum at f=0, with an > cusp, and
the minimum melting temperature 7(f=0) is small compared
to the maximum melting temperature 7(f=1/2). Chiral do-
mains produced by thermal fluctuations play a key role in
determining the melting temperature.

We found that the melting scenario takes a surprise turn if
the electrostatic interaction between next-neighbor counter-
ion columns becomes very weak, e.g., if the salt concentra-
tion of the solution is high: the chiral Wigner crystal first
melts into an achiral Wigner crystal with a reduced period-
icity along the z direction d/3. As the temperature is raised,
the achiral crystal transforms into a phase with full transla-
tional symmetry through the unbinding of 1/3 fractional to-
pological defects. The intermediate achiral phase disappears
as the range and strength of the electrostatic interaction in-
creases. It is interesting to note a curious similarity of this
melting scenario with the well-known Halperin-Nelson-
Kosterlitz-Thouless-Young two-stage melting scenario of 2D
crystals, where dislocation unbinding first produces a hexatic
mesophase which then transforms into an isotropic fluid by
disclination unbinding [26]. The difference is that a disloca-
tion with a large Burgers vector can be viewed as a pair 5-7
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of disclinations while a screw-dislocation line of the Wigner
crystal must be viewed as an assembly of three fractional
1/3 charges.

Experimental verification of the Wigner-crystallization/
melting scenario outlined here requires the observation of the
long-range correlations of the counterion density. Specifi-
cally, we expect that as the strength of electrostatic interac-
tions V is increased, order is established along the backbone
direction of the bundle. From the Debye-Hiickel model in
Appendix A, we see that V; is increased by increasing coun-
terion valency, bundle density, and decreasing monovalent
salt concentration. It is not clear if the chirality parameter f
may be systematically varied in any physically realizable
system since this is likely most sensitive to biopolymer struc-
ture. The most direct signature of counterion order would be
pronounced (x-ray or neutron) scattering along the backbone
direction at wave vectors associated with the periodicity G.
Careful scattering studies of F-actin bundles condensed by
the presence of polyvalent counterions (Z=2) by Wong et al.,
reveal a significant degree of order in the counterion density
along the backbone direction [27]. So far these studies are
unable to determine whether these correlations are one-
dimensional (short-ranged) in character or maintain the full
(long-ranged) three-dimensional order required by counter-
ion columns in registry. We note that of the two crystalliza-
tion scenarios discussed this article, the latter (summarized in
Fig. 12) would be most remarkable in terms of its scattering
signature. In this case, as electrostatic interactions are in-
creased (through V), we expect strong scattering to appear
first at wave vectors of order 3G. Only upon further increase
of electrostatic strength will the system begin to exhibit order
at the fundamental wave vector G. This “two-stage” crystal-
lization would provide a clear signature of melting by the
proliferation of fractionally charged screw defects.

The model that we used in this paper to arrive at these
conclusions has a number of important limitations. First, a
given counterion column was described by a single phase
variable. If the polyelectrolyte molecules are sufficiently
long than we have to allow the phase to vary along the z
direction, i.e., we have to allow for compressional fluctua-
tions of the counterion columns. In Appendix A, we show
that longitudinal fluctuations indeed can be neglected for suf-
ficiently short biopolymers but for longer chains, longitudi-
nal dephasing would turn the D=2 statistical mechanics
model treated this paper into a D=3 problem. We believe
that the general structure of the 3D phase diagram will be
similar to that of Fig. 4, but there is reason to be cautious.
One might expect, from the results of this paper, that the 3D
melting thermodynamics should be dominated by screw dis-
location unbinding, which should be in the universality class
of the 3D XY model. In a recent paper we investigated the
effects of longitudinal phase fluctuations in our model for a
simple special case, namely with the counterion columns re-
stricted to a—still frustrated—hexagonal lattice rather than
the Kagomé lattice [11]. Interestingly, the finite temperature
classical statistical mechanics of Wigner crystal melting
could be rigorously mapped onto the 7=0 quantum mechan-
ics of the metal-insulator transition of a hexagonal
Josephson-junction array in a magnetic field, i.e., with ther-
mal fluctuations replaced by quantum fluctuations. Bending
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fluctuations of the polyelectrolyte chains played the role of
gauge fluctuations of the vector potential. From the—highly
nontrivial—critical properties of the corresponding quantum
model [28], we were able to obtain the critical properties of
the melting transition and they were not those of the 3D XY
model. We thus must expect also for the present case that in
the 3D limit the thermodynamics of the melting transition
will not be in the universality class of the 3D XY model.

Could the same mapping be applied to include longitudi-
nal phase fluctuations in the Kagome lattice model? The f
=0 line of the model indeed can be mapped onto a frustrated
Josephson-junction array on a Kagomé lattice in a magnetic
field. However, the A;; term of the phase Hamiltonian corre-
sponds to a staggered magnetic flux. The quantum mechanics
of metal-insulator transitions of Josephson-junction arrays
with staggered flux Hamiltonians has not yet been investi-
gated, either experimentally or theoretically, though stag-
gered flux Hamiltonians have been studied in the context of
models of high-T, superconductivity, which interestingly
also feature fractional charges (“anyons™) [29].

A second important limitation of our model is that we
restrict the counterions within the bundle to the contact lines
between adjacent biopolymers, which are themselves con-
fined to a hexagonal lattice. This latter assumption is sup-
ported by considerable experimental evidence (see Ref. [1],
and references therein), although in principle the unusual at-
traction mediated by counterion condensation may lead to
some non-close-packed arrangement of biopolymers. How-
ever, even if we restrict our attention to the hexagonal pack-
ing of biopolymers, we could also consider other counterion
ground states that compete with those explored here. Indeed,
we might expect that due to the pronounced frustration in-
troduced by the Kagomé lattice, the counterions would prefer
to associate rather with the interstices between three neigh-
boring biopolymers. In this case, counterions would be local-
ized to columns situated in a honeycomb lattice, which is
unfrustrated from the point of view of the nearest-neighbor,
XY-antiferromagnetic interaction between columns. Despite
the greater degree of frustration, however, pure electrostatic
considerations favor Kagomé ground states over the unfrus-
trated honeycomb structures—a fact which was verified by
direct Ewald summation—since counterions in the latter
structure must be 3/2 times closer along the backbone direc-
tion than in the former structure.

We further note the neglect of fluctuations of counterions
in the plane of hexagonal order. This would seem to be a
reasonable assumption for counterions with high valency as
the long-wavelength mode for in-plane counterion displace-
ments is necessarily coupled to that for the biopolymer dis-
placement through the rotational invariance of the bundle.
That is, the long-wavelength bending modes of the biopoly-
mers themselves will tend to “drag” the associated counter-
ion columns along with the chains. Thus, since long-range
hexagonal order in the plane does not specifically require
phase coherence between counterion columns, we do not ex-
pect the inclusion of these long-wavelength bending modes
to dramatically alter our analysis. However, given the high
degree of frustration of the Wigner-crystal ground state, the
possibility of low-energy, lateral-displacement “defects” can-
not be ruled out. These have the form of topological defects
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in the ¢ order that lie in the plane. To address the above
limitations of the present model, and also to search for pos-
sible Wigner crystal mesophases, we are currently carrying
out numerical simulations on the polyelectrolyte bundles in
the presence of polyvalent counterions [30].

In this study we have demonstrated that the microscopic
heterogeneity of biopolymers (in form of the molecular
chirality f) plays a crucial role in determining the thermody-
namics of biopolymer Wigner crystals. Thus, the (chiral)
primitive model of biopolymers analyzed here may be
viewed as a “weak coupling” limit of a more expanded
model that accounts specific structural details of the biopoly-
mer (i.e., double-helical structure, inhomogeneous charge
density, etc.). While the case of “strong coupling” to biopoly-
mer heterogeneity remains to be explored, we note that the
present model can be straightforwardly generalized to ex-
plore the importance of molecular-scale effects within a sys-
tematic framework.
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APPENDIX A: DEBYE-HUCKEL THEORY
AND MODEL PARAMETERS

In this section, we provide explicit expressions for the
model parameters of the phase Hamiltonian on physical pa-
rameters, assuming the Debye-Hiickel (DH) limit of aqueous
electrostatics. In DH theory, the electrostatic interaction be-
tween two polyvalent pointlike counterions of valency Z is
proportional to V(r) ~ (Ze)?e™*"/r, where the Debye param-
eter « is determined by the concentration of monovalent salt
ions. The electrostatic interaction between the counterion
columns i and j is of the form

2 L L
Hy=" f dz f dz' op(Vie—)dpc) (A1)
0 0

assuming a counterion charge density of the form of Eq.
(2.1) and

Viz-2')=VI\D; 1.

Di+(z-2") (A2)

Here, D;; is the in-plane seperation between columns at
Kagomé sites i and j. Using Eq. (2.1), we find the following
interaction between the two columns:

©

H =2 Vi cos(n[ ;- ;). (A3)
n=1
where
2
Vf;ﬁ = %KO[DU\"(”G)2 + K] (A4)
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and Ky(x) a modified Bessel function. Note that ijn) drops
exponentially as a function of n. Retaining only the n=1
terms yields the effective anti-ferromagnetic terms (with
A;=0) in Eq. (2.2).

Compressional modes of the counterions can be included
by allowing variation of counterion phase variable ¢; along
the z direction. The interion separation along the chain
changes by d— d(1+G~'d¢,/dz). The associated energy cost

is of the form
C(* [(de:\?
ch_f dz<ﬁ>
2J dz

with C proportional to the compressional modulus. In DH

theory the electrostatic self-energy per unit length of the

counterion column would be given by

(Ze)?
d2

(AS)

Uself(d) == ln(l - e_Kd) . (A6)
It follows from Eq. (A6) that the magnitude of the compres-
sive modulus is of the form C~ (Ze)?¢~*?. The correlation
function for phase fluctuations along the column is of the

form
(8p(0)8pi(z)) ~ cos(Gz)(el 404y (A7)

Neglecting intercolumn coupling, one finds that
(el P06y ~ o=llV&: wyith & =2C/ kT, which is of the order
of Z*051n(1/kd), with €5 the Bjerrum length. The theory
presented in this paper, which neglects longitudinal phase
fluctuations, thus is valid provide the chain length L is less
than &, which requires large Z and low salt concentration.

APPENDIX B: CHIRAL PHASE SHIFT

In this appendix we present a simple microscopic model
for computing the gaugelike term A;; appearing in Eq. (2.2).
Consider the phases of two adjacent counterion columns ¢;
and ¢, as part of a hexagonal plaquette surrounding a poly-
electrolyte molecule. The nonuniform charge distribution
along the molecule produces a helical contribution to the
electrostatic potential ¢, which has a periodicity p along the
direction of the polymer backbone. The electrostatic poten-
tial U(z) along column 1 produced by the helical charge
distribution is periodic with period p so U(z)=U(z+p). The
potential encountered by counterion column 2 is then the
same function U(z) but shifted along the z direction by a
distance +p/6 due to the rotation around the charge spiral
(the sign is determined by the handedness of the molecule).
In a simple model, the electrostatic potential can be repre-
sented by just a single Fourier mode

U(z) = Uy cos{G'[z + u(z)1}, (B1)

where G =2/p while u(z) represents the local displace-
ment of the polyelectrolyte backbone along the z direction,
which is assumed to be compressible. If p; is the dominant
amplitude of the counterion charge density modulation with
wave number G=2/d, then the helical potential adds the
following contribution to the phase Hamiltonian
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L

H,= pGUOJ dz(cos{G'[z + u(z) Jfcos(Gz + ¢y)
0

+ cos{G'[z + u(z) £ p/6]}cos(Gz + ¢h,)). (B2)

For slow variation of u(z) along the backbone, this integral is
dominated by the following term:
. L 1 T
H,= pGUofo dz cos(AGz + E(cﬁl + ) +G'u(z) = g)

Xcose(dﬁ —$) F g) (B3)

where AG=G-G'. This chiral energy is minimized for
du(z)/dz=—(AG/G') with the counterion density modula-
tion locked to the charge modulation of the polyelectrolyte,
but this is resisted by the rigidity of the polyelectrolyte. If we
define a one-dimensional compressional modulus B for the
polyelectrolyte, then the combined energy has the form

L du 2 .
lezf dz B(d_z) + T, cos[AGz+G'u(z) + 1.

0
(B4)

Here, T j,=pgU,cos[(d;—¢,)/2Fm/6] and ¢ =(¢,
+¢,)/2+ /6. This energy expression was minimized by
Frank and van der Merwe in their study of misfit locations
[31]. It follows from their results that if (AG/G")*<T'|,/B
then u(z) locks into the minimum of the potential, i.e.,
G'u(z)+AGz+¢" is set to an odd or even multiple of 7,
depending on the sign of I'|,. In this locked state, the energy
depends on the phase difference as

AH /L =—|pgUy cos[ (¢ — )2 F m/6]|.  (B5)

The optimal phase difference of +7/3 in Eq. (B5) corre-
sponds to a gauge term of magnitude |Ayl=m/3, ie., f
=+1/2, but note that this chiral term still must be combined
with the direct nearest-neighbor electrostatic interaction.

The opposite regime, where the molecular compressibility
resists lock-in, corresponds to an incommensurate “floating
phase.” Thermal fluctuations of u(z) play an important role
in this phase. We will expand the partition function in powers
of I'j, and integrate the terms over u(z). To lowest order in
perturbation theory, one finds the following chiral contribu-
tion to the Hamiltonian:

|F12|2 L t
AH]Z:_ dZ dZ’
2 0 0

X(cos[AGz + G'u(z)]cos[AGz' + G'u(z') 1),
(B6)

where (---), denotes a thermal average with respect to the
Boltzmann weight exp[-BB[5dz(du/dz)*]. Computing this
expectation value one obtains an expression of the form

AHn:—chos(qSl—quI g) +C, (B7)

with
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2& LlpcUy|?
Ve £L Uyl

1+ (AGE)? (B8)
and
2B
Gk "

Note that the optimal phase shift in the floating phase again
equals +77/3. Combining the chiral interaction with the “di-
rect” anti-ferromagnetic interaction V(]) cos(p;— ¢,) gives an
effective nearest-neighbor column interaction of the form of
Eq. (2.2) with

V= V()2 T30V 2 (B10)
and
2af\  _ NEY'a
tan( 3 )— +—2V(1)—Vk' (B11)

Note that as Uy— 0 we return to the achiral limit, f—0. If
the longitudinal phase fluctuations of Appendix B are in-
cluded, then similar results are obtained, even if the back-
bone is incompressible, with the longitudinal counterion
compressibility C replacing B.

APPENDIX C: POISSON SUMMATION
AND DUAL MODEL

In this appendix we provide details regarding derivation
of the dual Hamiltonian H,; from the partition function in Eq.
(2.5). Using the Poisson summation formula, the uncon-
strained sums in Z, over j(R,) and j(R,) can be written as
integrals over the continuous fields ®(R;,) and ®(R,) along
with a discrete sum over integers all m(R;,) and m(R,),

Zy= 2 [dP(R))][dD(R,)]
{m(Ry),m(R,)}
% (H eZm‘d)(Rh)[m(Rh)—3—2f]) (H e—S(R,)) (C1)
Rh Rt
with
I B_l

SR) =2, 7‘[@(&) -®R)P
R

- 2mcI>(R,)<m(R,) + % + f>, (C2)

where the prime on the sum indicates a summation over the
three hexagonal sites R, which border the triangular site at
R,. This “action” is harmonic in ®(R,), and these fields can
be integrated out on each R, to yield the following partition
function:
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Zy= X

e~ (PBUOZ [SR) + 2/
M(R,)=0+122.K '

S(R)=+1+3 K
B :
x f [dP(R;)Jexp - = 2 [P(R,) - P(R)T
<Rh»R;,>
+2mi2, O(R)Q(R,) ¢ (C3)
Ry,
where, after redefining the integer sums,
S(R)=3-2m(R)) (C4)
and
M(R;) =m(R;) -3 (Cs)

we arrive at the definition of defect “charge” in Eq. (2.10).
The continuous field ®(R;) (defined on the hexagonal
lattice connecting hexagonal dual sites R;,) plays the roles of
an “electrostrostatic” potential which mediates interactions
between “charges” Q(R;,). By integrating over ®(R;) above,
it can be shown that charges on sites R, and R;, interact via
a potential 37 3,G(R,,,R;) where G'(R,,R)) is the La-
placian operator define on the hexagonal lattice
G'(R,R)) = 63r, R/ ~ OR,.R))- (Co)
Because G(0) diverges as In(R/D), where R is the system
size, it is useful to subtract this divergence from the interac-
tion G'(R,)=G(R;,)-G(0). The remaining portion is well
approximated by

’ 1 ! 1
G'(R,,R;) =-—=In(|R,-R;|/D) - — (C7)
23 6

which holds to better than 1% for all R, # R;. Upon insert-
ing this form of the charge interaction into the partition func-
tion, we arrive at Egs. (2.6)—(2.8). Note that the global defect
charge neutrality condition is a direct result of the logarith-
mic divergence of G(0). [32]

APPENDIX D: FLUCTUATIONS AND CORRELATIONS
IN THE DUAL MODEL

In this appendix we describing how phase correlations in
the original model of Eq. (2.2) are related to the statistical
mechanics of the dual theory. The phase-phase correlation
function is defined as

8ij= (P %)), (D1)
At low temperatures the phase of g;; encodes the relative
displacement along the z direction of counterion columns at
Kagomé sites i and j. The counterion density-density corre-
lation function is related to g; by (Jp,(0)dp;(2))
~ Re[e‘ingij] so loss of phase coherence by transverse phase
fluctuations implies a loss of position correlations of counte-
rions in Wigner crystal.
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FIG. 13. External “current” flowing from 7 to j that enters the
computation of the primary correlation function g;; in the dual rep-
resentation. The hexagonal sites bordering the receive contributions
to ¢’ (Ry,) from neighboring gray triangles. An edge-sharing triangle
contributes +2{(R,), while non-edge-sharing triangles contribute
—{(R,) to ' (R}) (see text). The resulting distribution of ¢’ (R;,) used
in Egs. (D4) and (D6) is shown in the hexagonal cells.

We can compute g;; by noting that in the calculation of the
average of ¢/(%~%) the “current conservation” condition on
sites i and j is altered. To compute g;; we must instead sum
over bond-integer configurations which satisfy

Enik=_2njk=1
k k

(D2)

and satisfy 2;n,,,=0 for all other sites. This is most easily
accomplished by summing over the circulating currents
J(R;) and j(R,) in the presence of an external current passing
from i and j (Ref. [23]) (see Fig. 13). We denote the path of
this external current by r.,;, and note that the path may be
chosen arbitrarily. The summation over j(R;) and j(R,) in
the presence of the external current is conveniently accom-
plished by replacing j(R;) with j(R,)+{(R,) in Eq. (2.5).
Here, {(R,) is a function that is zero if R, & r,, (meaning
r., does not pass through a side of the hexagonal cell at R},),
while if R, € r,,,, then {(R;)==1. The sign is determined by
the relative orientation of the external current and the circu-
lating current j(R,). Following this replacement, ®(R,) and
®(R;,) can be integrated over, as in Appendix C, to show that

gij = 8swgs&ola- (D3)

Here, g;; is factored according to the three types of fluctua-
tions that affect phase correlations: spin wave or phonon
fluctuations

E {'(R)G(R,,R)L(R))

gsw = €Xpy —
Rh'Rh

B-l

T 2 PR, (D4)
Rierey

chirality fluctuations

gs=eXp{ 3 > é’ z)S(R,)}, (D5)
R ergy

and ““charge” vortex fluctuations
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8Q=CXP{—”TE gl(Rh)G(RhaR;z)Q(RI;)}~ (D6)

’
R/l’Rh

The brackets (---),; in Eq. (D3) indicate a thermal average
with respect to the dual statistics in Eq. (2.6). The kernel
G(R;,R}), is given in Eq. (C7). The function ¢'(R;,) is only
nonzero for hexagonal cells with vertices and edges passed
through by r.,. For each bond along the path r., {'(R;)
receives a contribution +2(R;) on the hexagonal cell R,
sharing an edge with that bond, and {'(R;) receives a con-
tribution —(R;) on the hexagonal sites which only share
vertices with that particular bond. An example distribution of
'(R;,) is shown in Fig. 13. As noted in Ref. [20], {'(R})
generates discrete along the path r..

First, we consider the case of i and j which are nearest-
neighbor sites. In this case g;; encodes the ground-state struc-
ture. For short separations spin-wave fluctuations are negli-
gible and ggw=1. Consider a nearest neighbor pair that
forms the edge of the triangular plaquette at R,. The presence
of nonzero defect charge on hexagonal sites leads to the fol-
lowing contribution to gg:

(R,
8o = expy - Ly RuzR)T (D7)
¢ 2R, |Rh_

|2 Q(Rh) B
where we have assumed that |R,—R,|> D. From Eq. (D7)
we see that the variables Q(R},) describes vortex, or screw
defect, phase patterns. While at high temperature a nonzero
concentration of free vortices destroys phase coherence, at
low temperatures vortices are confined to dipole pairs and
the their effect on g, is limited. In this regime, g;; (gs)4
=(2mMLRISRIBY 1t follows that the spin variables S(R,) de-
scribe precisely the right- or left-handed helical arrange-
ments of counterions around the triangular plaquette at R,
shown in Fig. 2(c).

In the limit that |R;|>D—where R;; is the seperation
between sites i and j—it can be shown using the methods
outlined in Ref. [23] that spin-wave fluctuations lead to the
following asymptotic contribution to g;;;

| Ry
gsw =P /3< Dl])

(D8)
with

1
= = .
3B,

(D9)

The algebraic decay of phase correlations in a two-
dimensional XY system is a well-known consequence of
spin-wave fluctuations [32]. It can also be shown that in the
limit of large separations the contribution to phase correla-
tions for vortex fluctuations has the same form as the unfrus-
trated XY model on the square lattice [23], namely,

40~ exp{iz O(R,)[O(R, ~R;) - e(Rm}, (D10)

R)
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where tan (R)=x/y and for simplicity the origin is set to
site i.

The most significant difference between the long-distance
properties of phase correlations of this model and simpler
XY systems is due the presence of Ising-like fluctuations
of chirality. In the f=0 and B,=0 limit of the Kagomé
anti-ferromagnet, Cherapanov et al. demonstrated that states
with S(R,)==1 occur with equal probability [14]. Therefore,
even in the low-temperature limit where we are essentially
restricted to Q(R;)=0 ground states the thermal average
of e2mMERISRIS entering g in Eq. (D5) will be equal to
—1/2 for each R;er,. And hence for the achiral limit
fluctuations of the chiral variables on the triangular sites
lead to an exponential decay of correlations with
distance
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LI ~|R; /D
8ij ~ 8swigsha ~ D (=2)"RiP for f=B,=0.
(D11)

The above argument relies, however, on the presence of con-
figurations with chiral domain walls of infinite size. Consider
the case, with f>0, where S(R,) is—on average—aligned to
the —1 state and where chiral domains with S(R,) aligned to
the +1 state are finite and charge neutral. If neither site i or
site j are inside one of the finite-sized minority domains,
then, in computing g;;, one can always find a path from i to
J that avoids the minority domains. If the domains are indeed
charge neutral then decay of g;; can only be due to spin-wave
fluctuations so g;;~ gsw. leading to algebraic decay with dis-
tance.
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